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Abstract—This paper presents a method for the computation
of magnetostatic fields via a coupling scheme between a Finite
Element Method and a Boundary Element Method. While the
Finite Element Method treats all solid parts the Boundary
Element Method is used to tackle the unbounded air region.
There a reduced scalar potential is introduced which, in contrast
to an ansatz via a total scalar potential, allows also for the
numerical treatment of non-simply connected domains. The
boundary integral operators are discretized via fast methods.
Finally, for the resulting linear system of equations a sufficient
preconditioner is given.

I. INTRODUCTION

This work represents mainly a successor of the two previous
works [1] and [2]. While in [1] a total scalar potential has
been introduced which limits the use of the method to simply
connected domains only, in [2] a reduced scalar potential has
been proposed to overcome the topological restrictions of the
former.

As an enhancement to [2] the present work focuses on the
incorporation of so-called Fast Boundary Element techniques
and iterative solver schemes as they already have been worked
out in [1].

II. PROBLEM STATEMENT

Let Ω− ⊂ R3 be a bounded domain of general topology
that consists of all magnetic and non-magnetic parts. The
unbounded outer air region is Ω+ := R3 \ Ω− with the per-
meability µ = µ0. The interface boundary is assumed to be
sufficiently smooth and is assigned by Γ := ∂Ω−. It features
the outward normal vector n. Then, the magnetostatic field
equations for a prescribed current density j and the unknown
magnetic flux density B read as

curl
1
µ
B = j in Ω−

curl
1
µ0

B = 0 in Ω+

div B = 0 in Ω− ∪ Ω+ .

(1)

Additionally, on the boundary the interface conditions

[Bn] = 0 [H× n] = 0 on Γ (2)

for the magnetic flux density and the magnetic field H have
to be fulfilled.

III. INNER DOMAIN Ω−

As mentioned before the inner domain will be treated via
the Finite Element Method. Introducing a vector potential
B := curlA yields

curl
1
µ

curlA = j in Ω− . (3)

The Coulomb gauge is applied to ensure uniqueness

div A = 0 . (4)

For the derivation of the Finite Element Method the eqns.
(3) and (4) are multiplied with two test- functions v and q,
respectively. After integration by parts and the introduction of
a new variable p the weak formulation is obtained which reads
as: Find (A, p) ∈ H(curl,Ω−)×H1(Ω−) such that

∫
Ω−

1
µ curlA · curl v dΩ− +

∫
Ω−
∇p · v dΩ−

−
∫

Γ

(
1
µ curlA× n

)
· v dΓ =

∫
Ω−

j · v dΩ−∫
Ω−

A · ∇q dΩ− −
∫

Ω−
p dΩ−

∫
Ω−

q dΩ−

−
∫

Ω−
∇p · ∇q dΩ− = 0 (5)

holds for all test-functions (v, q) ∈ H(curl,Ω−)×H1(Ω−).
Note that in [1] it has been shown that the newly introduced
function p has the property p = const = 0 which allows for
the introduction of the final term in (5). This term is needed
to ensure the invertibility of the operator corresponding to p.

IV. EXTERIOR DOMAIN Ω+

If no magnetic materials are assumed, i.e. if µ ≡ µ0 holds
everywhere in R3, then a solution B0 of (1) can be found
via the Biot-Savart integration. Hence, with respect to the real
configuration the relation

curl
(

1
µB−

1
µ0

B0

)
= 0 in R3 (6)

holds which now allows for the introduction of a reduced
scalar potential ϕ with

∇ϕ = 1
µ0

(B−B0) in Ω+ (7)

and without any topological restrictions on Ω+. Next, inserting
(7) into the final equation of (1) and taking div B0 = 0 into



account the unknown potential ϕ is the solution of the Laplace
equation

µ0∆ϕ = 0 in Ω+ . (8)

In terms of boundary integral equations ϕ and its normal
derivative ρ := ∂ϕ/∂n can be expressed with help of the
Calderon projector(

ϕ
ρ

)
=
(

1
2I +K −V
−D 1

2I −K
′

)
·
(
ϕ
ρ

)
. (9)

In (9), V , K, K ′, and D denote the single-layer potential,
the double layer potential and its adjoint as well as the hyper-
singular operator. E.g., refer to [3] for a detailed deduction
of Boundary Element Methods. Throughout this work, all
the occurring boundary integral operators are computed by
using the Adaptive Cross Approximation [4] which reduces
the computational effort from O(N2) to O(N logN).

V. COUPLING SCHEME

Starting from the interface conditions (2) and inserting the
definitions of A and ϕ into the continuity condition of the
magnetic flux density’s normal component gives

curlA · n = ρ+ B0 · n . (10)

Moreover, the continuity of the tangential component of the
H-field yields

1
µ curlA× n = ∇ϕ× n + 1

µ0
B0 × n . (11)

Next, inserting (10) and (11) into (5) and by exploiting the
integral equations (9) as well as the formula for integration by
parts

−
∫

Γ

(n×∇ϕ) · u dΓ =
∫

Γ

ϕ curl u · n dΓ (12)

yields the final problem formulation: Find (A, p, ϕ) ∈
H(curl,Ω−)×H1(Ω−)×H1/2(Γ) such that∫

Ω−

1
µ curlA · curl v dΩ− −

∫
Ω−
∇p · v dΩ−+∫

Γ

[
1
µ0
V curlA · n− K̃ϕ

]
curl v · n dΓ =

∫
Ω−

j · v dΩ−

+ 1
µ0

∫
Γ

(B0 × n) · v dΓ− 1
µ0

∫
Γ

(VB0 · n) curl v · n dΓ∫
Γ

(
K̃ ′ curlA · n

)
ψ dΓ + µ0

∫
Γ

(
D̃ϕ
)
ψ dΓ =∫

Γ

(
K̃ ′B0 · n

)
ψ dΓ∫

Ω−
A · ∇q dΩ− −

∫
Ω−

p dΩ−
∫

Ω−
q dΩ−−∫

Ω−
∇p · ∇q dΩ− = 0 (13)

holds for all test functions (v, q, ψ) ∈ H(curl,Ω−) ×
H1(Ω−)×H1/2(Γ). In (13), the abbreviations K̃ := 1

2I +K

and K̃ ′ := 1
2I − K

′ have been introduced. Additionally, the
hypersingular operator D has a non-trivial kernel such that a
stabilized form (D̃ϕ, ψ)Γ := (Dϕ,ψ)Γ + (ϕ, 1)Γ(ψ, 1)Γ with
the inner product (u, v)Γ :=

∫
Γ
uv dΓ has to be used instead.

VI. DISCRETIZATION AND SOLVER

The application of a Galerkin discretization to the weak
formulation (13) with the space Wh of piecewise linear
boundary elements and the space Xh of lowest order standard
edge-elements gives the skew-symmetric block-system[

µ0D̃ −K̃>

K̃ 1
µ Ã + 1

µ0
V

] [
ϕ
a

]
=
[
f
g

]
(14)

for (ϕ, a)> ∈ Wh × Xh. The system (14) is already given in
a reduced form since the unknowns p have been eliminated.
Therefore, the block Ã is defined as Ã := A + µBP−1B>.
Next, the system (14) is transformed into a symmetric and
positive definite system via the Bramble/Pasciak transforma-
tion [5] such that one ends up with

G :=

[
C−1
D D̃ −C−1

D K̃>

−K̃C−1
D

(
D̃− CD

)
1
µ0

Ã + 1
µV + K̃C−1

D K̃>

]
. (15)

The preconditioner CD is given by CD := MV−1
linM where the

discretizations of the mass matrix M and Vlin are realized
within the space Wh. Note that the system G is symmetric
and positive definite with respect to the inner product([

ϕ
a

]
,

[
φ
b

])
:=
((

D̃− CD
)
ϕ, φ

)
+ (a, b) . (16)

It remains to define a preconditioner CH for the lower right
block. It can be constructed from

(Ha, v) :=
(

1
µ curlA, curl v

)
Ω−

+
(

1
µA,v

)
Ω−

. (17)

Refer to [1] for a proof of spectral equivalence. Finally, the
complete preconditioner for G reads as

CG := diag(ID,CH) (18)

with the identity matrix ID of dimension dim(Wh).
With the preconditioner (18) the deduction of the fast and

robust BEM-FEM coupling scheme is complete. For a rather
moderate number of unknowns (≈ 106) the preconditioning
can be realized by help of very efficient direct sparse solvers
while for larger systems multigrid solvers are superior.
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