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Abstract—This paper presents a method for the computation
of magnetostatic fields via a coupling scheme between a Finite
Element Method and a Boundary Element Method. While the
Finite Element Method treats all solid parts the Boundary
Element Method is used to tackle the unbounded air region.
There a reduced scalar potential is introduced which, in contrast
to an ansatz via a total scalar potential, allows also for the
numerical treatment of non-simply connected domains. The
boundary integral operators are discretized via fast methods.
Finally, for the resulting linear system of equations a sufficient
preconditioner is given.

I. INTRODUCTION

This work represents mainly a successor of the two previous
works [1] and [2]. While in [1] a total scalar potential has
been introduced which limits the use of the method to simply
connected domains only, in [2] a reduced scalar potential has
been proposed to overcome the topological restrictions of the
former.

As an enhancement to [2] the present work focuses on the
incorporation of so-called Fast Boundary Element techniques
and iterative solver schemes as they already have been worked
out in [1].

II. PROBLEM STATEMENT

Let Q= C R3 be a bounded domain of general topology
that consists of all magnetic and non-magnetic parts. The
unbounded outer air region is QF := R*\ Q~ with the per-
meability p = po. The interface boundary is assumed to be
sufficiently smooth and is assigned by I' :== 9€Q2~. It features
the outward normal vector n. Then, the magnetostatic field
equations for a prescribed current density j and the unknown
magnetic flux density B read as

1
curl -B = in Q7
I
1
curl —B =0 inQF (D
Ho
divB =0 nQ-uOt.

Additionally, on the boundary the interface conditions

[Bn] =0 [Hxn]=0 onT (2)
for the magnetic flux density and the magnetic field H have

to be fulfilled.

III. INNER DOMAIN )~
As mentioned before the inner domain will be treated via
the Finite Element Method. Introducing a vector potential
B = curl A yields

1
curl —curl A =j in Q™ . 3)

The Coulomb gauge is applied to ensure uniqueness
divA=0. “4)

For the derivation of the Finite Element Method the eqns.
(3) and (4) are multiplied with two test- functions v and ¢,
respectively. After integration by parts and the introduction of
a new variable p the weak formulation is obtained which reads
as: Find (A, p) € H(curl,Q7) x HY(Q™) such that

/ icur1A~cur1de*+/ Vp- v dQ~

—/(lcurlAXn)~VdI‘:/ j-vdQ~
r\/ -
A~quQ_—/ de_/ q dQ~
O _ _

- Vp-VgdQ™ =0 (5)

Q-
holds for all test-functions (v,q) € H(curl,Q™) x H}(Q7).
Note that in [1] it has been shown that the newly introduced
function p has the property p = const = 0 which allows for
the introduction of the final term in (5). This term is needed
to ensure the invertibility of the operator corresponding to p.

IV. EXTERIOR DOMAIN QT

If no magnetic materials are assumed, i.e. if ;& = pg holds
everywhere in R3, then a solution By of (1) can be found
via the Biot-Savart integration. Hence, with respect to the real
configuration the relation

curl (lB - LBO) -0 inR? 6)
H Ho
holds which now allows for the introduction of a reduced

scalar potential ¢ with
_ 1 _ : +
Vo = 2 (B —By) in Q (7

and without any topological restrictions on Q. Next, inserting
(7) into the final equation of (1) and taking div By = 0 into



account the unknown potential ¢ is the solution of the Laplace
equation

oAy =0 inQt . )]

In terms of boundary integral equations ¢ and its normal
derivative p := J¢/On can be expressed with help of the

Calderon projector
1
o\ _ (3I+K -V %

(ﬂ)( D I-K') \p)" )
In (9), V, K, K’, and D denote the single-layer potential,
the double layer potential and its adjoint as well as the hyper-
singular operator. E.g., refer to [3] for a detailed deduction
of Boundary Element Methods. Throughout this work, all
the occurring boundary integral operators are computed by
using the Adaptive Cross Approximation [4] which reduces
the computational effort from O(N?) to O(N log N).

V. COUPLING SCHEME

Starting from the interface conditions (2) and inserting the
definitions of A and ¢ into the continuity condition of the
magnetic flux density’s normal component gives

(10)

Moreover, the continuity of the tangential component of the
H-field yields

curlA - n=p+Bp-n.

LeurlA xn=Vexn+ tByxn.

1D
Next, inserting (10) and (11) into (5) and by exploiting the
integral equations (9) as well as the formula for integration by
parts

—/(nchp)-udF=/<pcurlu~ndF (12)
r

r

yields the final problem formulation: Find (A,p,p) €
H(curl, Q™) x HY(Q™) x HY*(T') such that

/ icurlA~cur1de*f/ Vp-vdQ +

jovdQT
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Vp-VqgdQ~ =0 (13)
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holds for all test functions (v,q,v) € H(curl,27) x
HY(Q7) x HY2(T'). In (13), the abbreviations K = 31 + K
and K/ = %I — K’ have been introduced. Additionally, the
hypersingular operator D has a non-trivial kernel such that a
stabilized form (D, ¥)p := (Dg,¥)r + (¢, 1) (¥, 1)r with
the inner product (u,v)r := [, uv dl has to be used instead.

VI. DISCRETIZATION AND SOLVER

The application of a Galerkin discretization to the weak
formulation (13) with the space W), of piecewise linear
boundary elements and the space A}, of lowest order standard
edge-elements gives the skew-symmetric block-system

S T
[l

H Ho
for (p,a)T € Wy, x X),. The system (14) is already given in
a reduced form since the unknowns p have been eliminated.
Therefore, the block A is defined as A = A+,LLBP*1|3T.
Next, the system (14) is transformed into a symmetric and
positive definite system via the Bramble/Pasciak transforma-

tion [5] such that one ends up with

c C,'D —Cp'KT
TR (D-Cp) EA+LVHRCHKT

] . (15)

The preconditioner Cp, is given by Cp := MVl_wle where the
discretizations of the mass matrix M and Vy;,, are realized
within the space W,,. Note that the system G is symmetric
and positive definite with respect to the inner product

(m ’ [ﬂ) = ((6-Cp) ¢.¢) +(a:b) -

It remains to define a preconditioner Cg for the lower right
block. It can be constructed from

(e, (),

(16)

a7)

Refer to [1] for a proof of spectral equivalence. Finally, the
complete preconditioner for G reads as

Cg = diag(Ip,Cx)

with the identity matrix |p of dimension dim(W,).

With the preconditioner (18) the deduction of the fast and
robust BEM-FEM coupling scheme is complete. For a rather
moderate number of unknowns (~ 10°) the preconditioning
can be realized by help of very efficient direct sparse solvers
while for larger systems multigrid solvers are superior.

(18)
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